Polynomial harmonic GMDH learning networks for time series modeling

نویسندگان

  • Nikolay I. Nikolaev
  • Hitoshi Iba
چکیده

This paper presents a constructive approach to neural network modeling of polynomial harmonic functions. This is an approach to growing higher-order networks like these build by the multilayer GMDH algorithm using activation polynomials. Two contributions for enhancement of the neural network learning are offered: (1) extending the expressive power of the network representation with another compositional scheme for combining polynomial terms and harmonics obtained analytically from the data; (2) space improving the higher-order network performance with a backpropagation algorithm for further gradient descent learning of the weights, initialized by least squares fitting during the growing phase. Empirical results show that the polynomial harmonic version phGMDH outperforms the previous GMDH, a Neurofuzzy GMDH and traditional MLP neural networks on time series modeling tasks. Applying next backpropagation training helps to achieve superior polynomial network performances.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling and Multi-Objective Optimization of Stall Control on NACA0015 Airfoil with a Synthetic Jet using GMDH Type Neural Networks and Genetic Algorithms

This study concerns numerical simulation, modeling and optimization of aerodynamic stall control using a synthetic jet actuator. Thenumerical simulation was carried out by a large-eddy simulation that employs a RNG-based model as the subgrid-scale model. The flow around a NACA0015 airfoil, including a synthetic jet located at 10 % of the chord, is studied under Reynolds number Re = 12.7 × 106 a...

متن کامل

A New Approach to Polynomial Neural Networks based on Genetic Algorithm

Recently, a lot of attention has been devoted to advanced techniques of system modeling. PNN(polynomial neural network) is a GMDH-type algorithm (Group Method of Data Handling) which is one of the useful method for modeling nonlinear systems but PNN performance depends strongly on the number of input variables and the order of polynomial which are determined by trial and error. In this paper, w...

متن کامل

Optimization of self-organizing polynomial neural networks

0957-4174/$ see front matter 2013 Elsevier Ltd. A http://dx.doi.org/10.1016/j.eswa.2013.01.060 ⇑ Tel.: +385 1 4561191. E-mail address: [email protected] The main disadvantage of self-organizing polynomial neural networks (SOPNN) automatically structured and trained by the group method of data handling (GMDH) algorithm is a partial optimization of model weights as the GMDH algorithm optimizes on...

متن کامل

A Hybrid GMDH and Box-Jenkins Models in Time Series Forecasting

The group method of data handling technique (GMDH) and Box-Jenkins methods are two wellknown time series forecasting of mathematical modeling. In this paper, we introduce a hybrid modeling which combines the GMDH method with the Box-Jenkins method to model time series data. The Box-Jenkins method was used to determine the useful input variables of GMDH method and then the GMDH method which work...

متن کامل

Modeling and Multi-objective Optimization of Stall Control on Naca0015 Airfoil with a Synthetic Jet Using Gmdh Type Neural Networks and Genetic Algorithms

This study concerns numerical simulation, modeling and optimization of aerodynamic stall control using a synthetic jet actuator. The numerical simulation was carried out by a large-eddy simulation that employs a RNG-based model as the subgrid-scale model. The flow around a NACA0015 airfoil, including a synthetic jet located at 10 % of the chord, is studied under Reynolds number Re = 12.7 × 10 a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neural networks : the official journal of the International Neural Network Society

دوره 16 10  شماره 

صفحات  -

تاریخ انتشار 2003